Rowe Scientific SODIUM TETRABORATE ROWE SCIENTIFIC

Chemwatch: **10449**Version No: **11.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **07/12/2020**Print Date: **07/12/2020**L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Rowe Scientific SODIUM TETRABORATE	
Chemical Name	sodium borate, decahydrate	
Synonyms	CB2370, CS1130, CS1146	
Chemical formula	I formula B4Na2O7·5H2O B 4 H 20 Na 2 O 17 Na2B4O7 B4-O7.2Na.10H2-O	
Other means of identification	Not Available	
CAS number	1303-96-4	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Laboratory chemical.

Details of the supplier of the safety data sheet

Registered company name	ROWE SCIENTIFIC	
Address	11 Challenge Boulevard Wangara WA 6065 Australia	
Telephone	61 8 9302 1911	
Fax	+61 8 9302 1905	
Website	https://rowe.com.au/	
Email	rowewa@rowe.com.au	

Emergency telephone number

Association / Organisation	ROWE SCIENTIFIC
Emergency telephone numbers	+61 8 9302 1911 (24 Hrs)
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S5	
Classification [1] Eye Irritation Category 2A, Skin Corrosion/Irritation Category 2, Specific target organ toxicity - single exposure Category (respiratory tract irritation), Reproductive Toxicity Category 1B		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H319	Causes serious eye irritation.	
H315	Causes skin irritation.	
H335	H335 May cause respiratory irritation.	
H360FD	May damage fertility. May damage the unborn child.	

Precautionary statement(s) Prevention

P201	P201 Obtain special instructions before use.	
P271	Use only outdoors or in a well-ventilated area.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	
P261	Avoid breathing dust/fumes.	

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/attention.	
P321	Specific treatment (see advice on this label).	
P362	Take off contaminated clothing and wash before reuse.	
P305+P351+P338	8 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P302+P352	IF ON SKIN: Wash with plenty of water.	
P304+P340	P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	
P332+P313 If skin irritation occurs: Get medical advice/attention.		

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233 Store in a well-ventilated place. Keep container tightly closed.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

CAS No	%[weight]	Name
1303-96-4	>98	sodium borate, decahydrate

Mixtures

See section above for composition of Substances

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.		
Inhalation	Inhalation If fumes or combustion products are inhaled remove from contaminated area.	

	Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

For acute or repeated short term exposures to boron and its compounds:

Nausea, vomiting, diarrhoea and epigastric pain, haematemesis and blue-green discolouration of both faeces and vomitus characterise adult boron intoxication.

Access and correct any abnormalities found in airway and circulation.

A tidal volume of 10-15 mg/kg should be maintained.

Emesis should be induced unless the patient is in coma, is experiencing seizures or has lost the gag reflex. If any of these are present, gastric lavage should be performed with a large-bore tube after endotracheal intubation or in the presence of continuous respiratory action.

Activated charcoal is probably not of value though its use might be indicated following gastric evacuation. Catharsis might be useful to eliminate any borates remaining in the gastro-intestinal tract (magnesium sulfate: adults, 30 gms: children 250 mg/kg).

Peritoneal dialysis and haemodialysis remove some borates.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

There is no restriction on the type of extinguisher which may be used.

Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.			
Advice for firefighters				
Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.				
Fire/Explosion Hazard	Non combustible. Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: metal oxides May emit poisonous fumes. May emit corrosive fumes.			
HAZCHEM	Not Applicable			

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Remove all ignition sources.		
	Clean up all spills immediately.		
Avoid contact with skin and eyes.			
	Control personal contact with the substance, by using protective equipment.		
Use dry clean up procedures and avoid generating dust.			
	Place in a suitable, labelled container for waste disposal.		
	Moderate hazard.		
	CAUTION: Advise personnel in area.		
	Alert Emergency Services and tell them location and nature of hazard.		
	Control personal contact by wearing protective clothing.		
Major Spills	Prevent, by any means available, spillage from entering drains or water courses.		
Major Spilis	Recover product wherever possible.		
	IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other		
	containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.		
	ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.		
	If contamination of drains or waterways occurs, advise Emergency Services.		

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions	for safe	handling
--------------------	----------	----------

Precautions for safe handling					
Safe handling	Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS.				
Other information	Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. For major quantities: Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.				

Conditions for safe storage, including any incompatibilities

Suitable container	Glass container is suitable for laboratory quantities Polyethylene or polypropylene container. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	The substance may be or contains a "metalloid" The following elements are considered to be metalloids; boron, silicon, germanium, arsenic, antimony, tellurium and (possibly) polonium The electronegativities and ionisation energies of the metalloids are between those of the metals and nonmetals, so the metalloids exhibit characteristics of both classes. The reactivity of the metalloids depends on the element with which they are reacting. For example, boron acts as a nonmetal when reacting with sodium yet as a metal when reacting with fluorine. Unlike most metals, most metalloids are amphoteric- that is they can act as both an acid and a base. For instance, arsenic forms not only salts such as arsenic halides, by the reaction with certain strong acid, but it also forms arsenites by reactions with strong bases. Most metalloids have a multiplicity of oxidation states or valences. For instance, tellurium has the oxidation states +2, -2, +4, and +6. Metalloids react like non-metals when they react with metals and act like metals when they react with non-metals.

Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.

These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.

The state of subdivision may affect the results.

Avoid storage with reducing agents.

Avoid strong acids, bases.

Avoid contact finely divided zirconium.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure	sodium borate,	Borates, tetra, sodium salts (decahydrate)	5	Not	Not	Not
Standards	decahydrate		mg/m3	Available	Available	Available
Australia Exposure	sodium borate,	Borates, tetra, sodium salts (anhydrous)	1	Not	Not	Not
Standards	decahydrate		mg/m3	Available	Available	Available
Australia Exposure	sodium borate,	Borates, tetra, sodium salts (pentahydrate)	1	Not	Not	Not
Standards	decahydrate		mg/m3	Available	Available	Available

Emergency Limits

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
sodium borate, decahydrate	Sodium borate decahydrate (Borax)	6 mg/m3	190 mg/m3	1,100 mg/m3
sodium borate, decahydrate	Sodium borate; (Disodium tetraborate)	6 mg/m3	88 mg/m3	530 mg/m3

Ingredient	Original IDLH	Revised IDLH
sodium borate, decahydrate	Not Available	Not Available

MATERIAL DATA

It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

cause inflammation

cause increased susceptibility to other irritants and infectious agents

lead to permanent injury or dysfunction

permit greater absorption of hazardous substances and

acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

For inorganic borates and tetraborates:

No data are currently available to establish a causal link between inhalation exposures to sodium tetraborates and chronic respiratory and/or systemic effects. An occupationally important toxic effect of the sodium tetraborates is their acute irritant effect when in contact with skin and the mucous membranes of the eyes, nose and other sites of the respiratory tract. The irritant properties increase with decreasing water of hydration due to the exothermic effect of hydration. The TLV-TWA of 1 mg/m3 for the anhydrous and pentahydrate forms and 5 mg/m3 for the decahydrate is thought to be protective against the acute irritant effects.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Type of Contaminant:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant

Air Speed:

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

Safety glasses with side shields.

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Neoprene gloves

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

polychloroprene.

nitrile rubber.

butyl rubber.

fluorocaoutchouc.

polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

Body protection	See Other protection below
	Overalls.
Other must stier	P.V.C apron.
Other protection	Barrier cream.
	Skin cleansing cream. Eye wash unit.
	Eye wash unit.

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

Use approved positive flow mask if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	,

Hard, odourless crystals, granules or powder. Soluble in glycerol; very slightly soluble in alcohol; insoluble in acids. Solubility in water @ 0 deg.C: 2.01 g/100 cc. @ 100 deg.C: 170 g/100 cc. Loses water of crystallization when heated: @ 100 deg C. - 5 mols H2O; @ 150 deg.C. - 9 mols H2O; @ 320 deg. C. -10 mols H2O.

Physical state	Divided Solid	Relative density (Water = 1)	1.71-1.73
Odour	Not Available	Partition coefficient n- octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not available.
pH (as supplied)	Not Applicable	Decomposition temperature	1575
Melting point / freezing point (°C)	62-75	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	320 (loses H2O)	Molecular weight (g/mol)	381.37
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Non Volatile	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Nil @ 38C
Vapour pressure (kPa)	Negligible	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	9.2-9.5
Vapour density (Air = 1)	Not Applicable	VOC g/L	Not Applicable

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first

removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Borates, as represented by borax, may act as simple respiratory irritants. In a study of the respiratory effects of borax dust on active borax workers, the incidence of respiratory symptoms, pulmonary function and abnormalities of chest radiographs were related to estimated exposures. Dryness of the mouth, nose or throat, dry cough, nose bleeds, sore throat, productive cough, shortness of breath and chest tightness were related to exposures of 4 mg/m3 or more Inhalation of small amounts of dust or fume over long periods may cause poisoning.

Accidental ingestion of the material may be damaging to the health of the individual.

Symptoms of borate poisoning include nausea, vomiting, diarrhoea, epigastric pain. These may be accompanied headache, weakness and a distinctive red skin rash. In severe cases there may be shock, increased heart rate and the skin may appear blue. Vomiting (which may be violent) is often persistent and vomitus and faeces may contain blood. Weakness, lethargy, headache, restlessness, tremors and intermittent convulsions may also occur. Poisoning produces central nervous system stimulation followed by depression, gastrointestinal disturbance (haemorrhagic gastro-enteritis), erythematous skin eruptions (giving rise to a boiled lobster appearance) and may also involve kidneys (producing oliguria, albuminuria, anuria) and, rarely, liver (hepatomegaly, jaundice). Toxic symptoms may be delayed for several hours.

Ingested borates are readily absorbed and do not appear to be metabolised via the liver. Excretion occurs mainly through the kidneys in the urine with about half excreted in the first 12 hours and the remainder over 5-12 days. Borates are excreted primarily in the urine regardless of the route of administration.

The borates (tetra-, di-, meta, or ortho- salts, in contrast to perborates) once solubilised in the acid of gastric juices, cannot be distinguished from each other on chemical or toxicological grounds. In humans acute gastroenteric (or percutaneous absorption of as little as 1 gm of sodium borate can result in severe gastrointestinal irritation, kidney damage. In adults the mean lethal dose of sodium borate or boric acid probably exceeds 30 gms (Gosselin) and death occurs due to vascular collapse in the early stages or to central nervous system depression in later stages.

Children are thought to be more susceptible to the effects of borate intoxication.

Skin Contact

Ingestion

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Borax is not absorbed through intact skin but is readily absorbed through areas of damaged, abraded, or burned skin and areas of active dermatitis.

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: - clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of:

- clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Eye

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. Chronic poisoning by borates may be characterised gastrointestinal disturbances and skin rash. Chronic absorption of small amounts of borax causes mild gastroenteritis and dermatitis.

Chronic feeding studies involving borate administration to rats and dogs leads to accumulation in the testes, germ cell depletion and testicular atrophy. Hair loss in a young woman was traced to chronic ingestion of boric acid-containing mouthwashes whilst hair loss, dermatitis, gastric ulcer and hypoplastic anaemia in an adult male was attributed to the consumption of an uncharacterised "boric tartrate" for 20 years (symptoms disappeared following withdrawal). Repeated ingestion or inhalation of sub-acute doses of boric acid produces gastrointestinal irritation and disturbance, loss of appetite, disturbed digestion, nausea and vomiting, erythematous rash which may become hard and purpuric, dryness of the skin and mucous membranes, reddening of the tongue, cracking of the lips, conjunctivitis, palpebral oedema and kidney injury. Workers exposed to dust levels containing in excess of 31 mg/m3 boric acid, showed atrophic and subatrophic changes of the respiratory mucous membranes. Prolonged ingestion by animals produces a variety of reproductive effects including changes to the ovaries, fallopian tubes, the testes, epididymis and sperm ducts.

Inorganic borates convert to boric acid at physiological pH in the aqueous layer overlying the mucosal surfaces prior to absorption. Boric acid is known to be readily taken up from the gastrointestinal tract in rats and humans, as demonstrated by experimental evidence in both human and animal studies, where more than 90% of the administered dose of borate was excreted as boric acid

Boric acid is not metabolized in either animals or humans, owing to the high energy level required (523 kJ/mol) to break the B-O bond. Because of the high pKa, regardless of the form of inorganic borate ingested (e.g., boric acid, disodium tetraborate decahydrate or boron associated with animal or plant tissues), uptake is almost exclusively (>98%) as undissociated boric acid.

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

SODIUM BORATE, DECAHYDRATE

bacteria

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Oral (rat) LD50: 4500-5000 mg/kg Eyes (rabbit) (-) Mild [Orica BORAX-Europe] Reproductive effector in rats Mutagenic towards

Acute Toxicity	Carcinogenicity	
Skin Irritation/Corrosion	Reproductivity	
Serious Eye Damage/Irritation	STOT - Single Exposure	
Respiratory or Skin sensitisation	STOT - Repeated Exposure	
Mutagenicity	Aspiration Hazard	

Legend:

- Data either not available or does not fill the criteria for classification
- Data available to make classification

SECTION 12 Ecological information

Toxicity

sodium borate, decahydrate	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96	Fish	74mg/L	2
	EC50	96	Algae or other aquatic plants	15.4mg/L	2
	NOEC	768	Fish	0.009mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.

Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.

A metal ion is considered infinitely persistent because it cannot degrade further.

The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

Microbial methylation plays important roles in the biogeochemical cycling of the metalloids and possibly in their detoxification. Many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. Antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases.

Environmental fate:

Boron is generally found in nature bound to oxygen and is never found as the free element. Atmospheric boron may be in the form of particulate matter or aerosols as borides, boron oxides, borates, borates, organoboron compounds, trihalide boron compounds, or borazines. Borates are relatively soluble in water, and will probably be removed from the atmosphere by precipitation and dry deposition. The half-life of airborne particles is usually on the order of days, depending on the size of the particle and atmospheric conditions.

Boron readily hydrolyses in water to form the electrically neutral, weak monobasic acid boric acid (H3BO3) and the monovalent ion, B(OH)4-. In concentrated solutions, boron may polymerise, leading to the formation of complex and diverse molecular arrangements. Because most environmentally relevant boron minerals are highly soluble in water, it is unlikely that mineral equilibria will control the fate of boron in water. Boron was found to not be significantly removed during the conventional treatment of waste water. Boron may, however, be co-precipitated with aluminum, silicon, or iron to form hydroxyborate compounds on the surfaces of minerals.

Waterborne boron may be adsorbed by soils and sediments. Adsorption-desorption reactions are expected to be the only significant mechanism that will influence the fate of boron in water. The extent of boron adsorption depends on the pH of the water and the chemical composition of the soil. The greatest adsorption is generally observed at pH 7.5-9.0. the single most important property of soil that will influence the mobility of boron is the abundance of amorphous aluminum oxide. The extent of boron adsorption has also been attributed to the levels of iron oxide, and to a lesser extent, the organic matter present in the soil, although other studies found that the amount of organic matter present was not important. The adsorption of boron may not be reversible in some soils. The lack of reversibility may be the result of solid-phase formation on mineral surfaces and/or the slow release of boron by diffusion from the interior of clay minerals. It is unlikely that boron is bioconcentrated significantly by organisms from water. A bioconcentration factor (BCF) relates the concentration of a chemical in the tissues of aquatic and terrestrial animals or plants to the concentration of the chemical in water or soil. The BCFs of boron in marine and freshwater plants, fish, and invertebrates were estimated to be <100. Experimentally measured BCFs for fish have ranged from 52 to 198. These BCFs suggest that boron is not significantly bioconcentrated.

As an element, boron itself cannot be degraded in the environment; however, it may undergo various reactions that change the form of boron (e.g., precipitation, polymerization, and acid-base reactions) depending on conditions such as its concentration in water and pH. In nature, boron in generally found in its oxygenated form. In aqueous solution, boron is normally present as boric acid and borate ions, with the dominant form of inorganic boron in natural aqueous systems as undissociated boric acid. Boric acid acts as an electron acceptor in aqueous solution, accepting an hydroxide ion from water to form (B(OH)4)-ion. In dilute solution, the favored form of boron is B(OH)4. In more concentrated solutions (>0.1 M boric acid) and at neutral to alkaline pH (6–11), polymeric species are formed (e.g., B3O3(OH)4-, B5O6(OH)4-, B3O3(OH)52-, and B4O5(OH)42-)

Most boron compounds are transformed to borates in soil due to the presence of moisture. Borates themselves are not further degraded in soil. However, borates can exist in a variety of forms in soil. Borates are removed from soils by water leaching and by assimilation by plants.

The most appreciable boron exposure to the general population is likely to be ingestion of food and to a lesser extent in water. As boron is a natural component of the environment, individuals will have some exposure from foods and drinking water

Boron-containing salts (borates) are ubiquitous in the environment. Surface soil, unpolluted waterways and seawater all typically contain significant amounts of boron as borate. Boron is an essential micronutrient for healthy growth of plants, however, it can be harmful to boron sensitive plants in higher quantities. In some areas such as the American Southwest, boron occurs naturally in surface waters in concentrations that have been shown to be toxic to commercially important plants.

Based on the collected information regarding aquatic toxicity, boron is not regarded as dangerous to aquatic organisms. The concentration in treated municipal waste water is a factor 100 lower than the NOEC-value for *Daphnia magna*.

No quality criteria exist for the concentration of boron in soil and compost. Boron is added to farmland when sewage sludge is applied as a soil improving agent, but there is not sufficient data to evaluate its effect on soil organisms. Being an essential micro-nutrient, no adverse effects of boron are expected at low concentrations.

Ecotoxicity:

In aquatic environments low concentrations of borates generally promote the growth of algae, whereas higher concentrations inhibited algal growth. In a growth inhibition test with *Scenedesmus subspicatus*, an EC50 value of 34 mg B/I was determined. Boric acid toxicity in Daphnia 48 h-LC50 (static test) was found to be 95 mg B/I. In a separate study it was concluded that chronic effects of boron to Daphnia may occur at a concentration of > 10 mg/I.

The toxicity of boron in fish is often higher in soft water than in hard water. The acute toxicity of boron towards *Danio rerio* (96 h-LC50) has been determined to 14.2 mg B/I. In a fish early life stage test with rainbow trout NOEC levels of boron have been determined in the range between 0.009 and 0.103 mg B/I, whereas the EC50 ranged from 27 to 100 mg B/I dependent on the water hardness.

DO NOT discharge into sewer or waterways.

For sodium tetraborate: Algal Toxicity: EC10: 24 mgB/L/96 Hr (Green algae, Scenedesmus subspicatus) B = boron Invertebrate Toxicity: LC50: 242 mgB/L/24Hr (Daphnids, Daphnia magna Straus) Fish Toxicity: Sea water- LC50: 74 mgB/L/96Hr (Dab, Limanda limanda) Fresh water- LC50: 88 mgB/L/24day LC50: 54

mgB/L/32day (Rainbow trout, Salmo gairdneri embryo- larval stage) LC50: 65 mgB/L/7day LC50: 71 mgB/L/3day (Goldfish, Carassius auratus embryo-larval stage) The product decomposes in the environment to natural borate. The product is soluble in water and leachable through normal soil. [Orica Borax Europe Ltd 02/96]

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Containers may still present a chemical hazard/ danger when empty.

Return to supplier for reuse/ recycling if possible.

Otherwise:

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Reduction Reuse

Product / Packaging disposal

Recycling
Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

DO NOT allow wash water from cleaning or process equipment to enter drains.

It may be necessary to collect all wash water for treatment before disposal.

In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

Where in doubt contact the responsible authority.

Recycle wherever possible or consult manufacturer for recycling options.

Consult State Land Waste Management Authority for disposal.

Bury residue in an authorised landfill.

Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

sodium borate, decahydrate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (sodium borate, decahydrate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average

PC - STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.